
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

ABSTRACT

The merging of optimization and simulation technologies
has seen a rapid growth in recent years. A Google search
on “Simulation Optimization” returns more than six
thousand pages where this phrase appears. The content of
these pages ranges from articles, conference presentations
and books to software, sponsored work and consultancy.
This is an area that has sparked as much interest in the
academic world as in practical settings. In this paper, we
first summarize some of the most relevant approaches that
have been developed for the purpose of optimizing
simulated systems. We then concentrate on the
metaheuristic black-box approach that leads the field of
practical applications and provide some relevant details of
how this approach has been implemented and used in
commercial software. Finally, we present an example of
simulation optimization in the context of a simulation
model developed to predict performance and measure risk
in a real world project selection problem.

1 INTRODUCTION

The optimization of simulation models deals with the
situation in which the analyst would like to find which of
possibly many sets of model specifications (i.e., input
parameters and/or structural assumptions) lead to optimal
performance. In the area of design of experiments, the
input parameters and structural assumptions associated
with a simulation model are called factors. The output
performance measures are called responses. For instance,
a simulation model of a manufacturing facility may include
factors such as number of machines of each type, machine
settings, layout and the number of workers for each skill
level. The responses may be cycle time, work-in-progress
and resource utilization.

In the world of optimization, the factors become
decision variables and the responses are used to model an

objective function and constraints. Whereas the goal of
experimental design is to find out which factors have the
greatest effect on a response, optimization seeks the
combination of factor levels that minimizes or maximizes a
response (subject to constraints imposed on factors and/or
responses). Returning to our manufacturing example, we
may want to formulate an optimization model that seeks to
minimize cycle time by manipulating the number of
workers and machines, while restricting capital investment
and operational costs as well as maintaining a minimum
utilization level of all resources. A model for this
optimization problem would consists of decision variables
associated with labor and machines as well as a
performance measure based on a cycle time obtained from
running the simulation of the manufacturing facility. The
constraints are formulated both with decision variables and
responses (i.e., utilization of resources).

In the context of simulation optimization, a simulation
model can be though of as a “mechanism that turns input
parameters into output performance measures” (Law and
Kelton, 1991). In other words, the simulation model is a
function (whose explicit form is unknown) that evaluates
the merit of a set of specifications, typically represented as
set of values. Viewing a simulation model as a function
has motivated a family of approaches to optimize
simulations based on response surfaces and metamodels.

A response surface is a numerical representation of the
function that the simulation model represents. A response
surface is built by recording the responses obtained from
running the simulation model over a list of specified values
for the input factors. A response surface is in essence a
plot that numerically characterizes the unknown function.
Hence, a response surface is not an algebraic
representation of the unknown function.

A metamodel is an algebraic model of the simulation.
A metamodel approximates the response surface and
therefore optimizers use it instead of the simulation model
to estimate performance. Standard linear regression has

PRACTICAL INTRODUCTION TO SIMULATION OPTIMIZATION

Jay April
Fred Glover

James P. Kelly
Manuel Laguna

1919 7th Street

OptTek Systems
Boulder, CO 80302 USA

April, Glover, Kelly and Laguna

been and continues to be one of the most popular
techniques used to build metamodels in simulation. More
recently, metamodels based on neural networks (Laguna
and Martí, 2002) and Kriging (van Beers and Kleijnen,
2003) have also been developed and used for estimating
responses based on input factors. Once a metamodel is
obtained, in principle, appropriate deterministic
optimization procedures can be applied to obtain an
estimate of the optimum (Fu, 2002).

2 CLASSICAL APPROACHES FOR SIMULATION
OPTIMIZATION

Fu (2002) identifies 4 main approaches for optimizing
simulations:

• stochastic approximation (gradient-based

approaches)
• (sequential) response surface methodology
• random search
• sample path optimization (also known as

stochastic counterpart)

Stochastic approximation algorithms attempt to mimic

the gradient search method used in deterministic
optimization. The procedures based on this methodology
must estimate the gradient of the objective function in
order to determine a search direction. Stochastic
approximation targets continuous variable problems
because of its close relationship with steepest descent
gradient search. However, this methodology has been
applied to discrete problems (see e.g. Gerencsér, 1999).

Sequential response surface methodology is based on
the principle of building metamodels, but it does so in a
more localized way. The “local response surface” is used
to determine a search strategy (e.g., moving to the
estimated gradient direction) and the process is repeated. In
other words, the metamodels do not attempt to characterize
the objective function in the entire solution space but rather
concentrate in the local area that the search is currently
exploring.

A random search method moves through the solution
space by randomly selecting a point from the neighborhood
of the current point. This implies that a neighborhood
must be defined as part of developing a random search
algorithm. Random search has been applied mainly to
discrete problems and its appeal is based on the existence
of theoretical convergence proofs. Unfortunately, these
theoretical convergence results mean little in practice
where its more important to find high quality solutions
within a reasonable length of time than to guarantee
convergence to the optimum in a n infinite number of
steps.

Sample path optimization is a methodology that
exploits the knowledge and experience developed for

deterministic continuous optimization problems. The idea
is to optimize a deterministic function that is based on n
random variables, where n is the size of the sample path.
In the simulation context, the method of common random
numbers is used to provide the same sample path to
calculate the response over different values of the input
factors. Sample path optimization owes its name to the
fact that the estimated optimal solution that it finds is based
on a deterministic function built with one sample path
obtained with a simulation model. Generally, n needs to be
large for the approximating optimization problem to be
close to the original optimization problem (Andradóttir,
1998).

While these four approaches account for most of the

literature in simulation optimization, they have not been
used to develop optimization for simulation software. Fu
(2002) identifies only one case (SIMUL8’s OPTIMZ)
where a procedure similar to a response surface method
has been used in a commercial simulation package. In
particular, he quotes the following short description of
OPTIMZ from SIMUL8’s website:

“OPTIMIZ uses SIMUL8’s ‘trials’ facility multiple times
to build an understanding of the simulation’s ‘response
surface’. (The effect that the variables, in combination,
have on the outcome). It does this very quickly because it
does not run every possible combination! It uses Neural
Network technology to learn the shape of the response
surface from a limited set of simulation runs. It then uses
more runs to obtain more accurate information as it
approaches potential optimal solutions.”

Since Fu’s article was published, however, SIMUL8

has abandoned the use of OPTIMZ, bringing down to zero
the number of practical applications of the four methods
mentioned above. Andradóttir (1998) gives the following
explanation for the lack of practical (commercial)
implementations of the methods mentioned above:

“Although simulation optimization has received a fair
amount of attention from the research community in recent
years, the current methods generally require a considerable
amount of technical sophistication on the part of the user,
and they often require a substantial amount of computer
time as well.”

Leading commercial simulation software employs

metaheuristics as the methodology of choice to provide
optimization capabilities to their users. We explore this
approach to simulation optimization in the next section.

April, Glover, Kelly and Laguna

3 METAHEURISTIC APPROACH TO

SIMULATION OPTIMIZATION

Now a days nearly every commercial discrete-event or
Monte Carlo simulation software package contains an
optimization module that performs some sort of search for
optimal values of input parameters rather than just perform
pure statistical estimation. This is a significant change
from 1990 when none of the packages included such a
functionality.

Like other developments in the Operations
Research/Computer Science interface (e.g., those
associated with solving large combinatorial optimization
problems) commercial implementations of simulation
optimization procedures have only become practical with
the exponential increase of computational power and the
advance in metaheuristic research. The metaheuristic
approach to simulation optimization is based on viewing
the simulation model as a black box function evaluator.

Figure 1 shows the black-box approach to simulation
optimization favored by procedures based on metaheuristic
methodology. In this approach, the metaheuristic
optimizer chooses a set of values for the input parameters
(i.e., factors or decision variables) and uses the responses
generated by the simulation model to make decisions
regarding the selection of the next trial solution.

Metaheuristic
Optimizer

Simulation
Model

Input
ParametersResponses

Figure 1: Black box approach to simulation optimization

Most of the optimization engines embedded in

commercial simulation software are based on evolutionary
approaches. The most notable exception is the
optimization algorithm in WITNESS, which is based on
search strategies from simulated annealing and tabu search.
(Incidentally, simulated annealing may be viewed as an
instance of a random search procedure; its main
disadvantage is the computational time required to find
solutions of a reasonably high quality.)

Evolutionary approaches search the solution space by
building and then evolving a population of solutions. The
evolution is achieved by means of mechanisms that create
new trials solutions out of the combination of two or more
solutions that are in the current population.
Transformation of a single solution into a new trial
solution is also considered in these approaches. Examples

of evolutionary approaches utilized in commercial software
are shown in Table 1.

Table 1: Commercial Implementations of Evolutionary

Approaches to Simulation Optimization
Optimizer Technology Simulation Software
OptQuest Scatter Search AnyLogic

Arena
Crystal Ball

CISM18
Enterprise Dynamics

Micro Saint
ProModel

Quest
SimFlex

SIMPROCESS
SIMUL8
TERAS

Evolutionary
Optimizer

Genetic
Algorithms

Extend

Evolver Genetic
Algorithms

@Risk

The main advantage of evolutionary approaches over

those based in sampling the neighborhood of a single
solution (e.g., simulated annealing) is that they are capable
of exploring a larger area of the solution space with a
smaller number of objective function evaluations. Since in
the context of simulation optimization evaluating the
objective function entails running the simulation model,
being able to find high quality solutions early in the search
is of critical importance. A procedure based on exploring
neighborhoods would be effective if the starting point is a
solution that is “close” to high quality solutions and if
theses solutions can be reached by the move mechanism
that defines the neighborhood.

3.1 Solution Representation and Combination

The methods that are designed to combine solutions in
an evolutionary metaheuristic approach depend on the way
solutions are represented. We define a solution to the
optimization problem as a set of values given to the
decision variables (i.e., the input parameters to the
simulation model, also called factors). For continuous
problems, a solution is given by a set of real numbers. For
pure integer problems, a solution is represented by a set of
integer values. A special case of integer problems, called
Boolean, are those where the decision variables can take
only two values: zero and one. Other solution
representations include permutations, where the input
parameters are integer values are required to be all
different. Complicated problems have mixed solution

April, Glover, Kelly and Laguna

representations with decision variables represented with
continuous and discrete values as well as permutations.

For solutions represented by continuous variables,
linear combinations are often used as a mechanism to
create new trial solutions. For instance, OptQuest uses the
following scheme:

)(xxrxx ′−′′−′= (1)
)(xxrxx ′−′′+′= (2)
)(xxrxx ′−′′+′′= (3)

Here x′ and x ′′ are the solutions being combined, and

r is a random number in the range (0, 1). When a different
random number is used for each variable in the solution,
the combination mechanism creates new trial solutions by
sampling the rectangles shown in Figure 2, which depicts
the combination of two solutions, x1 and x2, to generate
three trial solutions x3, x4, and x5 in a two-dimensional
space.

To limit the generation of new trial solutions to the
line defined by x1 and x2, the same random number r is
used to generate the values for each variable in the
solutions being combined. This linear combination
procedure, suggested in connection with the scatter search
methodology, is more general than the so-called “linear,
arithmetical, average or intermediate” crossover in the
genetic algorithm literature.

x3

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

x2 = (8,4)

x1 = (5,7)

x3 = x1 - r(x2 - x1)
x4 = x1 + r(x2 - x1)
x5 = x2 + r(x2 - x1)

y

x

x4

x5

x3

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

x2 = (8,4)

x1 = (5,7)

x3 = x1 - r(x2 - x1)
x4 = x1 + r(x2 - x1)
x5 = x2 + r(x2 - x1)

y

x

x4

x5

Figure 2: Linear combination of two solutions

In genetic algorithms, the methods used to combine

solutions are called crossover operators. Many crossover
operators have been suggested for specific applications in
settings such as nonlinear and combinatorial optimization.
For instance, if solutions are represented by a binary string,
the one-point crossover operator may be used. A crossover
point is selected at random and then two new trial solutions
are generated from two existing solutions, as shown in

Figure 3. The crossover point in Figure 3 is between the
7th and 8th binary variable.

1100110

Existing solutions

New trial solutions

0011 1010100 1001

1100110 001110101001001

Figure 3: One-point crossover for binary strings

The crossover operator in Figure 3 can be used not

only to combine binary strings but also to combine
solutions represented by general integer variables. When
solutions are represented by permutations, however, the
crossover operator must be modified, because the one
illustrated in Figure 3 may result in new trial solutions that
are not permutations.

A simple modification results in the following
operator. After selecting a crossover point, the
permutation is copied from the first existing solution until
the crossover point, then the other existing solution is
scanned and the next number is added if is not yet in the
new trial solution. The roles of the existing solutions are
then changed to generate a second trial solution, as
illustrated in Figure 4.

7,8,2,4,5

Existing solutions

New trial solutions

3,1,6 6,5,3,2,7 1,4,8

8,4,16,3,17,8,2,4,5 6,5,3,2,7

Figure 4: One-point crossover for permutations

A variety of combination methods for permutation

problems in the context of comparing the performance of
implementations of scatter search and genetic algorithms
can be found in Martí, Laguna and Campos (2002).

April, Glover, Kelly and Laguna

3.2 Use of Metamodels

Metaheuristic optimizers typically use metamodels as
filters with the goal of screening out solutions that are
predicted to be inferior compared to the current best known
solution. Laguna and Martí (2002) point out the
importance of using metamodels during the metaheuristic
search for the optimal solution:

“Since simulations are computationally expensive, the
optimization process would be able to search the solution
space more extensively if it were able to quickly eliminate
from consideration low-quality solutions, where quality is
based on the performance measure being optimized.”

OptQuest uses neural networks to build a metamodel

and then applies predefined rules to filter out potentially
bad solutions. The main issues that need to be resolved in
an implementation such as this one are:

• the architecture of the neural network
• data collection and training frequency
• filtering rules

The architecture of the neural network must be general

enough to be able to handle a wide variety of situations,
since the trained neural network becomes the metamodel
for the simulation model that evaluates the objective
function. At the beginning of the optimization process,
there are no data available to train the neural network.
However, as the search progresses, data become available
because new trial solutions are evaluated by running the
simulation model. Hence, a system such as OptQuest must
decide when enough data have been collected to trigger the
training of the neural network.

Once the neural network has been trained, it can be
used for filtering purposes. Suppose that x is a new trial
solution. Also suppose that x* is the best solution found so
far in the search. Let f(x) be the objective function value
associated with solution x. In other words, f(x) is the
response generated by the simulation model when x is used
as the input parameters. Also let)(ˆ xf be the predicted
objective function value for a solution x. In other words,

)(ˆ xf is the value obtained by evaluating the metamodel
with solution x. The filtering rules are based on the
following calculation (for a minimization problem):

 d =)(ˆ xf - f(x*) (5)

The main question now is: how large would d have to

be in order to eliminate x from further consideration? The
answer to this question would likely depend on the
prediction error of the metamodel and a parameter to trade

off speed and accuracy of the search. Figure 5 depicts the
metaheuristic optimization process with a metamodel filter.

Metaheuristic
Optimizer

Simulation
Model

f(x)

Metamodel
x

large d?

Discard x

Yes

No

)(ˆ xf

Figure 5: Metaheuristic optimizer with a metamodel filter

Metamodels can also be used as a means for

generating new trial solutions within a metaheuristic
search. For instance, OptQuest utilizes data collected
during the search to build a linear approximation of f(x)
with standard linear regression. If in addition, the
optimization problem contains linear constraints (see next
subsection), then linear programming may be used to find a
solution to the optimization problem. Since the true but
unknown objective function would likely be not linear in
most simulation optimization problems, the solution found
by solving the linear program can then be sent to the
simulator for evaluation purposes.

3.3 Constraints

An important feature in simulation optimization
software is the ability to specify constraints. Constraints
define the feasibility of trial solutions. Constraints may be
specified as mathematical expressions (as in the case of
mathematical programming) or as statements based on
logic (as in the case of constraint logic programming). In
the context of simulation optimization, constraints may be
formulated with input factors or responses.

Suppose that a Monte Carlo simulation model is built
to predict the performance of a portfolio of projects. The
factors in this model are a set of variables that represent the
projects selected for the portfolio. A number of statistics
to define performance may be obtained after running the
simulation model. For instance, the mean and the variance
on the returns are two responses that are available after
running the simulation. Percentile values are also available
from the empirical distribution of returns. Then, an
optimization problem can be formulated in terms of factors
and responses, where one or more responses are used to
create an objective function and where constraints are
formulated in terms of factors and/or responses.

April, Glover, Kelly and Laguna

If the constraints in a simulation optimization model
depend only on input parameters then a new trial solution
can be checked for feasibility before running the
simulation. An infeasible trial solution may be discarded
or may be mapped to a feasible one when its feasibility
depends only on constraints formulated with input
parameters. OptQuest, for instance, has a mechanism to
map infeasible solutions of this type into feasible ones.

On the other hand, if constraints depend on responses
then the feasibility of a solution is not known before
running the simulation. In our project selection problem,
for example, a constraint that specifies that the variance of
the returns should not exceed a desired limit cannot be
enforced before the simulation is executed. While some
simulation optimization software (e.g., OptQuest) allows
the use of responses for stipulating constraints, other
packages (e.g., Extend’s Evolutionary Optimizer) do not.

4 BUDGET-CONSTRAINED PROJECT
SELECTION EXAMPLE

In this section, we expand upon the example that we
introduced above and show the benefits of simulation
optimization using Crystal Ball for the simulation and
OptQuest for the optimization. The problem may be stated
as follows. A company is considering investing in 5
different projects and would like to determine a level of
participation in each project:

• Tight Gas Play Scenario (TGP)
• Oil – Water Flood Prospect (OWF)
• Dependent Layer Gas Play Scenario (DL)
• Oil - Offshore Prospect (OOP)
• Oil - Horizontal Well Prospect (OHW)

The company has information regarding the cost,

probability of success and estimated distribution of returns
for each project. The company also knows that the total
investment should not exceed a specified limit. With this
information, the company has built a ten-year Monte Carlo
simulation model that incorporates different types of
uncertainty.

A base optimization model is constructed where the
objective function consists of maximizing the expected net
present value of the portfolio while keeping the standard
deviation of the NPV to less than 10,000 M$. The base
model has 5 continuous variables bounded between 0 and 1
to represent the level of participation in each project. It
also has two constraints, one that limits the total
investment and one that limits the variability of the returns.
Therefore, one of the constraints is solely based on input
factors and the other is solely based on a response. The
results from optimizing the base model with OptQuest are
summarized in Figure 6.

Figure 6: Results for base case

The company would like to compare the performance

of the base case with cases that allow for additional
flexibility and that define risk in different ways. Hence,
we now formulate a “deferment” case that consists of
allowing the projects to start in any of the first three years
in the planning horizon of 10 years. The number of
decision variables has increased from 5 to 10, because now
the model must choose the starting time for each project in
addition to specifying the level of participation. It is
interesting to point out that in a deterministic setting, the
optimization model for the deferment case would have 15
binary variables associated with the starting times. The
model also would have more constraints than the base
mode, in order to assure that the starting time of each
project occurs in only one out of three possible years. Let
yit equal 1 if the starting time for project i is year t and
equal 0 otherwise. Then the following set of constraints
would be added to a deterministic optimization model:

 y11 + y12 + y13 = 1
 y21 + y22 + y23 = 1
 y31 + y32 + y33 = 1
 y41 + y42 + y43 = 1
 y51 + y52 + y53 = 1

However, in our simulation optimization setting, we

only need to add 5 more variables to indicate the starting
times and no more constraints are necessary. The only
thing that is needed is to account for the starting times
when these values are passed to the simulation model. If
the simulation model has the information regarding the
starting times, then it will simulate the portfolio over the
planning horizon accordingly. The summary of the results
for the deferment case is shown in Figure 7.

Frequency Chart

 M$

Mean = $37,393.13
.000

.007

.014

.021

.028

0

7

14

21

28

$15,382.13 $27,100.03 $38,817.92 $50,535.82 $62,253.71

1,000 Trials 16 Outliers

Forecast: NPV

TGP = 0.4, OWF = 0.4, DL = 0.8, OHW = 1.
E(NPV) = 37,393 σ =9,501

April, Glover, Kelly and Laguna

Figure 7: Results for deferment case

Comparing the results of the deferment case and the

base case, it is immediately evident that the flexibility of
allowing for different starting times has resulted in an
increase in the expected NPV. The new portfolio is such
that it delays the investment on OHW until the third year
and it does not invest anything on OWF, for which the
level of participation was 40% in the base case. The
results in Figure 7 also show that the 10th percentile of the
distribution of returns is 36,096 M$. This information is
used to model our third and last case.

Encouraged by the results obtained with the model for
the deferment case, the company would like to find both
the participation levels and the starting times for a model
that attempts to maximize the probability that the NPV is
47,455 M$ while keeping the 10th percentile of returns at a
level of at least 36,096 M$. This new “Probability of
Success” model changes the definition of risk from setting
a maximum on the variability of the returns to setting a
minimum on the 10th percentile. The new model has the
same number of variables and constraints as the previous
one, because the constraint that controlled the maximum
variability has been changed to control the 10th percentile
value. The results associated with this model are shown in
Figure 8.

Figure 8: Results for probability of success case

The results in Figure 8 show that the new optimization

model has the effect of “pushing” the distribution of NPVs
to the right. Therefore, although the variability has
exceeded the limit that was used in the base case to control
risk, the new portfolio is not more risky than the first two if
we consider that with a high probability the NPV will be at
least as large as the expected NPV in the deferment case.

5 CONCLUSIONS

In this paper, we have introduced the key concepts
associated with the area of optimizing simulations. We
started by looking at the approaches that researchers have
investigated for many years. For the most part, these
approaches have not found use in commercial software.

We then discussed the metaheuristic approach to
simulation optimization. This is the approach widely used
in commercial applications and we focused on aspects that
are relevant to its implementation, namely: the solution
representation and combination, the use of metamodels and
the formulation of constraints.

Finally, we provided a Monte Carlo simulation
example that showed the advantage of combining
simulation and optimization. The level of performance
achieved by the solutions found with optimization would
be hard to match using a manual what-if analysis because
of the overwhelmingly large number of possible scenarios
that the analyst would have to consider.

There is still much to learn and discover about how to
optimize simulated systems both from the theoretical and
the practical points of view. As Andradóttir (1998) states
“… additional research aimed at increasing the efficiency
and ease of application of simulation optimization
techniques would be valuable.”

Frequency Chart

 M$

Mean = $47,455.10
.000

.007

.014

.020

.027

0

6.75

13.5

20.25

27

$25,668.28 $37,721.53 $49,774.78 $61,828.04 $73,881.29

1,000 Trials 8 Outliers

Forecast: NPV

TGP1 = 0.6, DL1=0.4, OHW3=0.2
E(NPV) = 47,455 σ =9,513 10th Pc.=36,096

Frequency Chart

 M$

Mean = $83,971.65
.000

.008

.016

.024

.032

0

8

16

24

32

$43,258.81 $65,476.45 $87,694.09 $109,911.73 $132,129.38

1,000 Trials 13 Outliers

Forecast: NPV

TGP1 = 1.0, OWF1=1.0, DL1=1.0, OHW3=0.2
E(NPV) = 83,972 σ =18,522
P(NPV > 47,455) = 0.99 10th Pc.=43,359

April, Glover, Kelly and Laguna

REFERENCES

Andradóttir, S. (1998) “A Review of Simulation
Optimization Techniques,” in Proceedings of the 1998
Winter Simulation Conference, D.J. Medeiros, E.F.
Watson, J.S. Carson and M.S. Manivannan (eds.), PP.
151-158.

Fu, M. (2002) “Optimization for Simulation: Theory and
Practice,” INFORMS Journal on Computing, vol. 14,
no. 3, pp. 192-215.

Laguna, M. and R. Martí (2002) “Neural Network
Prediction in a System for Optimizing Simulations”
IIE Transactions, vol. 34, no. 3, pp. 273-282.

Law, A. M. and W. D. Kelton (1991) Simulation Modeling
and Analysis, Second Edition, McGraw-Hill, New
York.

Martí, R., M. Laguna and V. Campos (2002) “Scatter
Search Vs. Genetic Algorithms: An Experimental
Evaluation with Permutation Problems”, to appear in
Adaptive Memory and Evolution: Tabu Search and
Scatter Search, Cesar Rego and Bahram Alidaee
(eds.), Kluwer Academic Publishers, Boston.

van Beers, W. C. M. and J. P. C. Kleijnen (2003) “Kriging
for Interpolation in Random Simulation,” Journal of
the Operational Research Society, vol. 54, no. 3, pp.
255-262.

