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ABSTRACT 

The merging of optimization and simulation technologies 
has seen a rapid growth in recent years.  A Google search 
on “Simulation Optimization” returns more than six 
thousand pages where this phrase appears.  The content of 
these pages ranges from articles, conference presentations 
and books to software, sponsored work and consultancy.  
This is an area that has sparked as much interest in the 
academic world as in practical settings.  In this paper, we 
first summarize some of the most relevant approaches that 
have been developed for the purpose of optimizing 
simulated systems. We then concentrate on the 
metaheuristic black-box approach that leads the field of 
practical applications and provide some relevant details of 
how this approach has been implemented and used in 
commercial software.  Finally, we present an example of 
simulation optimization in the context of a simulation 
model developed to predict performance and measure risk 
in a real world project selection problem. 

1 INTRODUCTION 

The optimization of simulation models deals with the 
situation in which the analyst would like to find which of 
possibly many sets of model specifications (i.e., input 
parameters and/or structural assumptions) lead to optimal 
performance.  In the area of design of experiments, the 
input parameters and structural assumptions associated 
with a simulation model are called factors.  The output 
performance measures are called responses.  For instance, 
a simulation model of a manufacturing facility may include 
factors such as number of machines of each type, machine 
settings, layout and the number of workers for each skill 
level.  The responses may be cycle time, work-in-progress 
and resource utilization. 

In the world of optimization, the factors become 
decision variables and the responses are used to model an 

objective function and constraints.  Whereas the goal of 
experimental design is to find out which factors have the 
greatest effect on a response, optimization seeks the 
combination of factor levels that minimizes or maximizes a 
response (subject to constraints imposed on factors and/or 
responses).  Returning to our manufacturing example, we 
may want to formulate an optimization model that seeks to 
minimize cycle time by manipulating the number of 
workers and machines, while restricting capital investment 
and operational costs as well as maintaining a minimum 
utilization level of all resources.  A model for this 
optimization problem would consists of decision variables 
associated with labor and machines as well as a 
performance measure based on a cycle time obtained from 
running the simulation of the manufacturing facility.  The 
constraints are formulated both with decision variables and 
responses (i.e., utilization of resources). 

In the context of simulation optimization, a simulation 
model can be though of as a “mechanism that turns input 
parameters into output performance measures” (Law and 
Kelton, 1991).  In other words, the simulation model is a 
function (whose explicit form is unknown) that evaluates 
the merit of a set of specifications, typically represented as 
set of values.  Viewing a simulation model as a function 
has motivated a family of approaches to optimize 
simulations based on response surfaces and metamodels. 

A response surface is a numerical representation of the 
function that the simulation model represents.  A response 
surface is built by recording the responses obtained from 
running the simulation model over a list of specified values 
for the input factors.  A response surface is in essence a 
plot that numerically characterizes the unknown function.  
Hence, a response surface is not an algebraic 
representation of the unknown function. 

A metamodel is an algebraic model of the simulation.  
A metamodel approximates the response surface and 
therefore optimizers use it instead of the simulation model 
to estimate performance.  Standard linear regression has 
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been and continues to be one of the most popular 
techniques used to build metamodels in simulation.  More 
recently, metamodels based on neural networks (Laguna 
and Martí, 2002) and Kriging (van Beers and Kleijnen, 
2003) have also been developed and used for estimating 
responses based on input factors.  Once a metamodel is 
obtained, in principle, appropriate deterministic 
optimization procedures can be applied to obtain an 
estimate of the optimum (Fu, 2002). 

2 CLASSICAL APPROACHES FOR SIMULATION 
OPTIMIZATION 

Fu (2002) identifies 4 main approaches for optimizing 
simulations: 

 
• stochastic approximation (gradient-based 

approaches) 
• (sequential) response surface methodology 
• random search 
• sample path optimization (also known as 

stochastic counterpart) 
 
Stochastic approximation algorithms attempt to mimic 

the gradient search method used in deterministic 
optimization.  The procedures based on this methodology 
must estimate the gradient of the objective function in 
order to determine a search direction.  Stochastic 
approximation targets continuous variable problems 
because of its close relationship with steepest descent 
gradient search.  However, this methodology has been 
applied to discrete problems (see e.g. Gerencsér, 1999). 

Sequential response surface methodology is based on 
the principle of building metamodels, but it does so in a 
more localized way.  The “local response surface” is used 
to determine a search strategy (e.g., moving to the 
estimated gradient direction) and the process is repeated. In 
other words, the metamodels do not attempt to characterize 
the objective function in the entire solution space but rather 
concentrate in the local area that the search is currently 
exploring. 

A random search method moves through the solution 
space by randomly selecting a point from the neighborhood 
of the current point.  This implies that a neighborhood 
must be defined as part of developing a random search 
algorithm.  Random search has been applied mainly to 
discrete problems and its appeal is based on the existence 
of theoretical convergence proofs.  Unfortunately, these 
theoretical convergence results mean little in practice 
where its more important to find high quality solutions 
within a reasonable length of time than to guarantee 
convergence to the optimum in a n infinite number of 
steps. 

Sample path optimization is a methodology that 
exploits the knowledge and experience developed for 

deterministic continuous optimization problems.  The idea 
is to optimize a deterministic function that is based on n 
random variables, where n is the size of the sample path.  
In the simulation context, the method of common random 
numbers is used to provide the same sample path to 
calculate the response over different values of the input 
factors.  Sample path optimization owes its name to the 
fact that the estimated optimal solution that it finds is based 
on a deterministic function built with one sample path 
obtained with a simulation model.  Generally, n needs to be 
large for the approximating optimization problem to be 
close to the original optimization problem (Andradóttir, 
1998). 

 
While these four approaches account for most of the 

literature in simulation optimization, they have not been 
used to develop optimization for simulation software.  Fu 
(2002) identifies only one case (SIMUL8’s OPTIMZ) 
where a procedure similar to a response surface method 
has been used in a commercial simulation package.  In 
particular, he quotes the following short description of 
OPTIMZ from SIMUL8’s website: 
 
“OPTIMIZ uses SIMUL8’s ‘trials’ facility multiple times 
to build an understanding of the simulation’s ‘response 
surface’.  (The effect that the variables, in combination, 
have on the outcome).  It does this very quickly because it 
does not run every possible combination!  It uses Neural 
Network technology to learn the shape of the response 
surface from a limited set of simulation runs.  It then uses 
more runs to obtain more accurate information as it 
approaches potential optimal solutions.” 

 
Since Fu’s article was published, however, SIMUL8 

has abandoned the use of OPTIMZ, bringing down to zero 
the number of practical applications of the four methods 
mentioned above.  Andradóttir (1998) gives the following 
explanation for the lack of practical (commercial) 
implementations of the methods mentioned above: 

 
“Although simulation optimization has received a fair 
amount of attention from the research community in recent 
years, the current methods generally require a considerable 
amount of technical sophistication on the part of the user, 
and they often require a substantial amount of computer 
time as well.” 

 
Leading commercial simulation software employs 

metaheuristics as the methodology of choice to provide 
optimization capabilities to their users.  We explore this 
approach to simulation optimization in the next section.   
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3 METAHEURISTIC APPROACH TO 

SIMULATION OPTIMIZATION 

Now a days nearly every commercial discrete-event or 
Monte Carlo simulation software package contains an 
optimization module that performs some sort of search for 
optimal values of input parameters rather than just perform 
pure statistical estimation.  This is a  significant change 
from 1990 when none of the packages included such a 
functionality.  

Like other developments in the Operations 
Research/Computer Science interface (e.g., those 
associated with solving large combinatorial optimization 
problems) commercial implementations of simulation 
optimization procedures have only become practical with 
the exponential increase of computational power and the 
advance in metaheuristic research.  The metaheuristic 
approach to simulation optimization is based on viewing 
the simulation model as a black box function evaluator. 

Figure 1 shows the black-box approach to simulation 
optimization favored by procedures based on metaheuristic 
methodology.  In this approach, the metaheuristic 
optimizer chooses a set of values for the input parameters 
(i.e., factors or decision variables) and uses the responses 
generated by the simulation model to make decisions 
regarding the selection of the next trial solution. 

 

Metaheuristic
Optimizer

Simulation
Model

Input
ParametersResponses

 
Figure 1: Black box approach to simulation optimization 

 
Most of the optimization engines embedded in 

commercial simulation software are based on evolutionary 
approaches.  The most notable exception is the 
optimization algorithm in WITNESS, which is based on 
search strategies from simulated annealing and tabu search.  
(Incidentally, simulated annealing may be viewed as an 
instance of a random search procedure; its main 
disadvantage is the computational time required to find 
solutions of a reasonably high quality.) 

Evolutionary approaches search the solution space by 
building and then evolving a population of solutions.  The 
evolution is achieved by means of mechanisms that create 
new trials solutions out of the combination of two or more 
solutions that are in the current population.  
Transformation of a single solution into a new trial 
solution is also considered in these approaches.  Examples 

of evolutionary approaches utilized in commercial software 
are shown in Table 1. 

 
Table 1: Commercial Implementations of Evolutionary 

Approaches to Simulation Optimization 
Optimizer Technology Simulation Software 
OptQuest Scatter Search AnyLogic 

Arena 
Crystal Ball 

CISM18 
Enterprise Dynamics 

Micro Saint 
ProModel 

Quest 
SimFlex 

SIMPROCESS 
SIMUL8 
TERAS 

Evolutionary 
Optimizer 

Genetic 
Algorithms 

Extend 

Evolver Genetic 
Algorithms 

@Risk 

 
 
The main advantage of evolutionary approaches over 

those based in sampling the neighborhood of a single 
solution (e.g., simulated annealing) is that they are capable 
of exploring a larger area of the solution space with a 
smaller number of objective function evaluations.  Since in 
the context of simulation optimization evaluating the 
objective function entails running the simulation model, 
being able to find high quality solutions early in the search 
is of critical importance.  A procedure based on exploring 
neighborhoods would be effective if the starting point is a 
solution that is “close” to high quality solutions and if 
theses solutions can be reached by the move mechanism 
that defines the neighborhood. 

3.1 Solution Representation and Combination 

The methods that are designed to combine solutions in 
an evolutionary metaheuristic approach depend on the way 
solutions are represented.  We define a solution to the 
optimization problem as a set of values given to the 
decision variables (i.e., the input parameters to the 
simulation model, also called factors).  For continuous 
problems, a solution is given by a set of real numbers.  For 
pure integer problems, a solution is represented by a set of 
integer values.  A special case of integer problems, called 
Boolean, are those where the decision variables can take 
only two values: zero and one.  Other solution 
representations include permutations, where the input 
parameters are integer values are required to be all 
different.  Complicated problems have mixed solution 
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representations with decision variables represented with 
continuous and discrete values as well as permutations. 

For solutions represented by continuous variables, 
linear combinations are often used as a mechanism to 
create new trial solutions.  For instance, OptQuest uses the 
following scheme: 

 
 )( xxrxx ′−′′−′=  (1) 
 )( xxrxx ′−′′+′=  (2) 
 )( xxrxx ′−′′+′′=  (3) 

 
Here x′  and x ′′  are the solutions being combined, and 

r is a random number in the range (0, 1).  When a different 
random number is used for each variable in the solution, 
the combination mechanism creates new trial solutions by 
sampling the rectangles shown in Figure 2, which depicts 
the combination of two solutions, x1 and x2, to generate 
three trial solutions x3, x4, and x5 in a two-dimensional 
space. 

To limit the generation of new trial solutions to the 
line defined by x1 and x2, the same random number r is 
used to generate the values for each variable in the 
solutions being combined.  This linear combination 
procedure, suggested in connection with the scatter search 
methodology, is more general than the so-called “linear, 
arithmetical, average or intermediate” crossover in the 
genetic algorithm literature. 
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Figure 2: Linear combination of two solutions 

 
In genetic algorithms, the methods used to combine 

solutions are called crossover operators.  Many crossover 
operators have been suggested for specific applications in 
settings such as nonlinear and combinatorial optimization.  
For instance, if solutions are represented by a binary string, 
the one-point crossover operator may be used.  A crossover 
point is selected at random and then two new trial solutions 
are generated from two existing solutions, as shown in 

Figure 3.  The crossover point in Figure 3 is between the 
7th and 8th binary variable. 

 

1100110

Existing solutions

New trial solutions

0011 1010100 1001

1100110 001110101001001

 
Figure 3: One-point crossover for binary strings 

 
The crossover operator in Figure 3 can be used not 

only to combine binary strings but also to combine 
solutions represented by general integer variables.  When 
solutions are represented by permutations, however, the 
crossover operator must be modified, because the one 
illustrated in Figure 3 may result in new trial solutions that 
are not permutations. 

A simple modification results in the following 
operator.  After selecting a crossover point, the 
permutation is copied from the first existing solution until 
the crossover point, then the other existing solution is 
scanned and the next number is added if is not yet in the 
new trial solution.  The roles of the existing solutions are 
then changed to generate a second trial solution, as 
illustrated in Figure 4. 

 

7,8,2,4,5

Existing solutions

New trial solutions

3,1,6 6,5,3,2,7 1,4,8

8,4,16,3,17,8,2,4,5 6,5,3,2,7

 
Figure 4: One-point crossover for permutations 

 
A variety of combination methods for permutation 

problems in the context of comparing the performance of 
implementations of scatter search and genetic algorithms 
can be found in Martí, Laguna and Campos (2002). 
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3.2 Use of Metamodels 

Metaheuristic optimizers typically use metamodels as 
filters with the goal of screening out solutions that are 
predicted to be inferior compared to the current best known 
solution.  Laguna and Martí (2002) point out the 
importance of using metamodels during the metaheuristic 
search for the optimal solution: 

 
“Since simulations are computationally expensive, the 
optimization process would be able to search the solution 
space more extensively if it were able to quickly eliminate 
from consideration low-quality solutions, where quality is 
based on the performance measure being optimized.” 

 
OptQuest uses neural networks to build a metamodel 

and then applies predefined rules to filter out potentially 
bad solutions.  The main issues that need to be resolved in 
an implementation such as this one are: 

 
• the architecture of the neural network 
• data collection and training frequency 
• filtering rules 
 
The architecture of the neural network must be general 

enough to be able to handle a wide variety of situations, 
since the trained neural network becomes the metamodel 
for the simulation model that evaluates the objective 
function.  At the beginning of the optimization process, 
there are no data available to train the neural network.  
However, as the search progresses, data become available 
because new trial solutions are evaluated by running the 
simulation model.  Hence, a system such as OptQuest must 
decide when enough data have been collected to trigger the 
training of the neural network. 

Once the neural network has been trained, it can be 
used for filtering purposes.  Suppose that x is a new trial 
solution.  Also suppose that x* is the best solution found so 
far in the search.  Let f(x) be the objective function value 
associated with solution x.  In other words, f(x) is the 
response generated by the simulation model when x is used 
as the input parameters.  Also let )(ˆ xf  be the predicted 
objective function value for a solution x.  In other words,  

)(ˆ xf  is the value obtained by evaluating the metamodel 
with solution x.  The filtering rules are based on the 
following calculation (for a minimization problem): 

 
 d = )(ˆ xf  - f(x*) (5) 

 
The main question now is: how large would d have to 

be in order to eliminate x from further consideration?  The 
answer to this question would likely depend on the 
prediction error of the metamodel and a parameter to trade 

off speed and accuracy of the search.  Figure 5 depicts the 
metaheuristic optimization process with a metamodel filter. 
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Figure 5: Metaheuristic optimizer with a metamodel filter 

 
Metamodels can also be used as a means for 

generating new trial solutions within a metaheuristic 
search.  For instance, OptQuest utilizes data collected 
during the search to build a linear approximation of f(x) 
with standard linear regression.  If in addition, the 
optimization problem contains linear constraints (see next 
subsection), then linear programming may be used to find a 
solution to the optimization problem.  Since the true but 
unknown objective function would likely be not linear in 
most simulation optimization problems, the solution found 
by solving the linear program can then be sent to the 
simulator for evaluation purposes. 

3.3 Constraints 

An important feature in simulation optimization 
software is the ability to specify constraints.  Constraints 
define the feasibility of trial solutions.  Constraints may be 
specified as mathematical expressions (as in the case of 
mathematical programming) or as statements based on 
logic (as in the case of constraint logic programming).  In 
the context of simulation optimization, constraints may be 
formulated with input factors or responses. 

Suppose that a Monte Carlo simulation model is built 
to predict the performance of a portfolio of projects.  The 
factors in this model are a set of variables that represent the 
projects selected for the portfolio.  A number of statistics 
to define performance may be obtained after running the 
simulation model.  For instance, the mean and the variance 
on the returns are two responses that are available after 
running the simulation.  Percentile values are also available 
from the empirical distribution of returns.  Then, an 
optimization problem can be formulated in terms of factors 
and responses, where one or more responses are used to 
create an objective function and where constraints are 
formulated in terms of factors and/or responses. 
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If the constraints in a simulation optimization model 
depend only on input parameters then a new trial solution 
can be checked for feasibility before running the 
simulation.  An infeasible trial solution may be discarded 
or may be mapped to a feasible one when its feasibility 
depends only on constraints formulated with input 
parameters.  OptQuest, for instance, has a mechanism to 
map infeasible solutions of this type into feasible ones. 

On the other hand, if constraints depend on responses 
then the feasibility of a solution is not known before 
running the simulation.  In our project selection problem, 
for example, a constraint that specifies that the variance of 
the returns should not exceed a desired limit cannot be 
enforced before the simulation is executed.  While some 
simulation optimization software (e.g., OptQuest) allows 
the use of responses for stipulating constraints, other 
packages (e.g., Extend’s Evolutionary Optimizer) do not. 

4 BUDGET-CONSTRAINED PROJECT 
SELECTION EXAMPLE 

In this section, we expand upon the example that we 
introduced above and show the benefits of simulation 
optimization using Crystal Ball for the simulation and 
OptQuest for the optimization.  The problem may be stated 
as follows.  A company is considering investing in 5 
different projects and would like to determine a level of 
participation in each project: 

 
• Tight Gas Play Scenario (TGP) 
• Oil – Water Flood Prospect (OWF) 
• Dependent Layer Gas Play Scenario (DL) 
• Oil - Offshore Prospect (OOP) 
• Oil - Horizontal Well Prospect  (OHW) 
 
The company has information regarding the cost, 

probability of success and estimated distribution of returns 
for each project.  The company also knows that the total 
investment should not exceed a specified limit.  With this 
information, the company has built a ten-year Monte Carlo 
simulation model that incorporates different types of 
uncertainty. 

A base optimization model is constructed where the 
objective function consists of maximizing the expected net 
present value of the portfolio while keeping the standard 
deviation of the NPV to less than 10,000 M$.  The base 
model has 5 continuous variables bounded between 0 and 1 
to represent the level of participation in each project.  It 
also has two constraints, one that limits the total 
investment and one that limits the variability of the returns.  
Therefore, one of the constraints is solely based on input 
factors and the other is solely based on a response.  The 
results from optimizing the base model with OptQuest are 
summarized in Figure 6. 

 

 
Figure 6: Results for base case 

 
The company would like to compare the performance 

of the base case with cases that allow for additional 
flexibility and that define risk in different ways.  Hence, 
we now formulate a “deferment” case that consists of 
allowing the projects to start in any of the first three years 
in the planning horizon of 10 years.  The number of 
decision variables has increased from 5 to 10, because now 
the model must choose the starting time for each project in 
addition to specifying the level of participation.  It is 
interesting to point out that in a deterministic setting, the 
optimization model for the deferment case would have 15 
binary variables associated with the starting times.  The 
model also would have more constraints than the base 
mode, in order to assure that the starting time of each 
project occurs in only one out of three possible years.  Let 
yit equal 1 if the starting time for project i is year t and 
equal 0 otherwise.  Then the following set of constraints 
would be added to a deterministic optimization model: 

 
 y11 + y12 + y13 = 1 
 y21 + y22 + y23 = 1 
 y31 + y32 + y33 = 1 
 y41 + y42 + y43 = 1 
 y51 + y52 + y53 = 1 

 
However, in our simulation optimization setting, we 

only need to add 5 more variables to indicate the starting 
times and no more constraints are necessary.  The only 
thing that is needed is to account for the starting times 
when these values are passed to the simulation model.  If 
the simulation model has the information regarding the 
starting times, then it will simulate the portfolio over the 
planning horizon accordingly.  The summary of the results 
for the deferment case is shown in Figure 7. 
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Figure 7: Results for deferment case 

 
Comparing the results of the deferment case and the 

base case, it is immediately evident that the flexibility of 
allowing for different starting times has resulted in an 
increase in the expected NPV.  The new portfolio is such 
that it delays the investment on OHW until the third year 
and it does not invest anything on OWF, for which the 
level of participation was 40% in the base case.  The 
results in Figure 7 also show that the 10th percentile of the 
distribution of returns is 36,096 M$.  This information is 
used to model our third and last case. 

Encouraged by the results obtained with the model for 
the deferment case, the company would like to find both 
the participation levels and the starting times for a model 
that attempts to maximize the probability that the NPV is 
47,455 M$ while keeping the 10th percentile of returns at a 
level of at least 36,096 M$.  This new “Probability of 
Success” model changes the definition of risk from setting 
a maximum on the variability of the returns to setting a 
minimum on the 10th percentile.  The new model has the 
same number of variables and constraints as the previous 
one, because the constraint that controlled the maximum 
variability has been changed to control the 10th percentile 
value.  The results associated with this model are shown in 
Figure 8. 

 

 
Figure 8: Results for probability of success case 

 
The results in Figure 8 show that the new optimization 

model has the effect of “pushing” the distribution of NPVs 
to the right.  Therefore, although the variability has 
exceeded the limit that was used in the base case to control 
risk, the new portfolio is not more risky than the first two if 
we consider that with a high probability the NPV will be at 
least as large as the expected NPV in the deferment case. 

5 CONCLUSIONS 

In this paper, we have introduced the key concepts 
associated with the area of optimizing simulations.  We 
started by looking at the approaches that researchers have 
investigated for many years.  For the most part, these 
approaches have not found use in commercial software. 

We then discussed the metaheuristic approach to 
simulation optimization.  This is the approach widely used 
in commercial applications and we focused on aspects that 
are relevant to its implementation, namely: the solution 
representation and combination, the use of metamodels and 
the formulation of constraints. 

Finally, we provided a Monte Carlo simulation 
example that showed the advantage of combining 
simulation and optimization.  The level of performance 
achieved by the solutions found with optimization would 
be hard to match using a manual what-if analysis because 
of the overwhelmingly large number of possible scenarios 
that the analyst would have to consider. 

There is still much to learn and discover about how to 
optimize simulated systems both from the theoretical and 
the practical points of view.  As Andradóttir (1998) states 
“… additional research aimed at increasing the efficiency 
and ease of application of simulation optimization 
techniques would be valuable.” 
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